Holiday packages of chemistry S4

- 1. What happens when a beam of neutrons passed through the gap between the charged plates?
- 2. Ziriconium, Zr and Hafnium, Hf, are metals. An isotope of ziriconium has 40 protons and 91 nucleons.
- a). Write the isotopic symbol for this isotope
- b). How many neutrons are present in one atom of this isotope?
- c). Hafnium ions, $^{180}_{72}$ Hf²⁺, are produced in mass spectrometer. How many electrons are present in one of these ion.
- d). The subatomic particles present in ziriconium and hafnium are electrons, protons and neutrons. A beam of protons is fired into an electric field produced by two charged plates.
- i). Describe how the beam of protons behaves when it passes through the gap between the charged plates. Explain your answer.
- ii).Describe and explain what happens when a beam of neutrons passes through the gap between the charged plates.
- e). Different ions are deflected by the magnetic field by different amounts. Explain.
- 3. The two isotopes of uranium are $^{235}_{92}$ U and $^{238}_{92}$ U
- a). In what ways are these two isotopes identical?
- b). In what ways do they differ?
- c). In a mass spectrometer, uranium atoms can be converted into ions, (U^{2+}) . State the number of electrons present in one (U^{2+}) ion.

4.

One of the oxides of tantalum is tantalum (V) oxide, Ta₂O₅. If the charge on the metal remained constant and then sulfur was substituted for oxygen,

- a) How would the formula change?
- b) Calculate the difference in the total number of protons between Ta₂O₅ and its sulfur analog?

- The mass spectrum of a hypothetical monatomic element A contains a peak at mass number 14 and another at mass number 16.
- a) Sketch the mass spectrum assuming the peak at mass number 14 is three times the height of the peak at 16.
- b) How many isotopes are present? Why?
- c) Determine the relative abundances of the isotopes?

Holiday packages of chemistry S2.

1.
The melting and boiling points of six substances are given below:

Substance	Melting point/°C	Boiling point/°C
Nitrogen	-210	-196
Carbon disulphide	-112	46
Ammonia	-78	-34
Bromine	-7	59
Phosphorus	44	280
Mercury (II) chloride	276	302

(Room temperature is taken as 20°C.)

- b) What do you understand by melting and boiling point?
- c) Which element is a solid at room temperature?
- d) Which compound is a liquid at room temperature?
- e) Which compound is a gas at room temperature?

Activate V Go to Setting 2.

An element X belongs in the group V and period 3 of the periodic table.

- (a) Draw an electron configuration of X
- (b) What is the valency of X?
- (c) Is X a metal or non metal element?

3.

Element M belongs to group III of the periodic table.

- (a) How many electrons does M have in the outer shell?
 - (b)Write the formula for:

Oxide of M

Chloride of M

Nitride of M

4. Copy and complete the table.

Atoms or ions	Mass number(A)	Atomic number(z)	Neutrons(n)	Protons(p)	Electrons(e)
1. Mg ²⁺	24	12			
2. N ³⁻			7		10

5.

No	The change	Product (formula)	Product (name)
1	K + Cl ₂ →		
2	$N_2 + H_2 \rightarrow$		
3	Na + O ₂ →		
4	$C(IV) + O_2 \rightarrow$		
5	$OH^- + Mg^{2+} \rightarrow$		
6	$P + O_2 \rightarrow$		
7	Na + + SO4 ²⁻ →		
8	$K + F_2 \rightarrow$		
9	H ₂ + C →		
10	AL + Cl ₂ →		
11	$Li + O_2 \rightarrow$		
12	CO ₃ ²⁻ + Na ⁺ →		
13	PO4 ⁵⁻ + K ⁺ →		
14	$C + Br_2 \rightarrow$		
15	$Mg + O_2 \rightarrow$		
16	P + 5O ₂ →		
17	$N_2 + O_2 \rightarrow$		
18	$Na + H_2 \rightarrow$		
19	C1O ₃ ⁻ + Ca ²⁺ →		
20	Magnesium ion + hydrogensulphate		
	ion		

- 6. Sodium chloride is an ionic compound. It is formed when sodium reacts with chlorine.
- (a) The atomic number of sodium and chlorine is 11 and 17 respectively.
- (i)Draw and label dot and cross diagrams to show the arrangement of the electrons in the atoms of sodium and chlorine.
- (ii)Draw and label dot and cross diagrams to show the arrangement of the electrons in the ions formed when sodium reacts with chlorine.
- (iii) Give the symbols of sodium and the chloride ions formed.
- (b) Draw a dot and cross diagram to show the bonding in a nitrogen molecule.